Пра́вильний многогра́нник або Плато́нове ті́ло — опуклий многогранник з максимально можливою симетрією, тобто всі його грані — рівні правильні многокутники, а всі вершини рівновіддалені від деякої точки, яку означають центром[1].
Многогранник називається правильним, якщо:
- він опуклий;
- всі його грані є рівними правильними многокутниками;
- в кожній його вершині сходиться однакове число граней;
- всі його двогранні кути рівні.
Існує всього п’ять правильних многогранників, які були віднайдені ще за античних часів:
Платонові тіла відомі ще з античності. Існує припущення, що певні різьблені кам’яні кулі, які були створені людьми пізнього неоліту Шотландії, представляють ці форми; однак ці кулі радше мають округлені півсфери, а не багатогранні; кількість таких півсфер часто відрізняється від числа вершин тіл Платона, немає кулі, чиї півсфери відповідали б 20 вершинам додекаедра, а розташування сфер не завжди було симетричний.[2]
Стародавні греки широко вивчали Платонові тіла. Деякі джерела (наприклад, Прокл Діадох) приписують їхнє відкриття Піфагору. Інші дані свідчать про те, що він, можливо, був лише знайомий з тетраедром, кубом та додекаедром, і що відкриття октаедра та ікосаедра належать Театету, сучаснику Платона. У будь-якому випадку, Театет дав математичну характеристику всіх п’яти і, можливо, саме він відповідальний за перший відомий доказ того, що немає інших опуклих правильних багатогранників.


Published: May 24, 2021
Latest Revision: May 24, 2021
Ourboox Unique Identifier: OB-1147980
Copyright © 2021