by Alyona Lysenko
Artwork: Альона Лисенко
Copyright © 2021
Історія розвитку поняття “функція”
Історія розвитку поняття функції.
Функція – одне з основних математичних і загальнонаукових понять. Воно зіграло й понині відіграє більшу роль у пізнанні реального миру.
Пропедевтичний період (з найдавніших часів до 17 століття).
Ідея функціональної залежності сходить до стародавності. Її втримування виявляється вже в перших математично виражених співвідношеннях між величинами, у перших правилах дій над числами. У перших формулах для знаходження площі й обсягу тих або інших фігур. Так, вавилонські вчені (4-5тис.років тому) нехай несвідомо, установили, що площа кругу є функцією від його радіуса за допомогою знаходження грубо наближеної формули: S=3r2. Прикладами табличного завдання функції можуть служити астрономічні таблиці вавилонян, стародавніх греків і індійців, а прикладами словесного завдання функції – теорема про сталість відносини площ кругу й квадрата на його діаметрі або античні визначення конічних перетинів, причому самі ці криві виступали як геометричні образи відповідної залежності.

Введення поняття функції через механічне й геометричне подання (17 століття.)
Починаючи лише з 17 століття, у зв’язку із проникненням у математику ідеї змінних, поняття функції явно й цілком свідомо застосовується.
Шлях до появи поняття функції заклали в 17 столітті французькі вчені Франсуа Вієт і Рене Декарт; вони розробили єдину буквену математичну символіку, що незабаром одержала загальне визнання. Уведене було єдине позначення: невідомих – останніми буквами латинського алфавіту – x, y, z, відомих – початковими буквами того ж алфавіту – a, b, c, … і т.д. Під кожною буквою стало можливим розуміти не тільки конкретні дані, але й багато хто інші; у математику прийшла ідея зміни. Тим самим з’явилася можливість записувати загальні формули.

Аналітичне визначення функції (17 – початок 19 століття).
Саме слово “функція” (від латинського functio -здійснення, виконання) уперше було вжито німецьким математиком Лейбницем в 1673р. у листі до Гюйгенсу (під функцією він розумів відрізок, довжина якого міняється по якому-небудь певному законі), у пресі ввів з 1694 року. Починаючи з 1698 року, Лейбниц увів також терміни “змінна” і “константа”. В 18 столітті з’являється новий погляд на функцію як на формулу, що зв’язує одну змінну з іншої. Це так звана аналітична точка зору на поняття функції. Підхід до такого визначення вперше зробив швейцарський математик Иоганн Бернуллі (1667-1748), що в 1718 році визначив функцію в такий спосіб: “функцією змінної величини називають кількість, утворена яким завгодно спосіб із цієї змінної величини й постійних”. Для позначення довільної функції від x Бернуллі застосував знак ?(x), називаючи характеристикою функції, а також букви x або ? ; Лейбниц уживав x1, x2 замість сучасних f1(x) , f2(x). Эйлер позначив через f : y, f: (x + y) те, що ми нині позначаємо через f(x), f(x+y).
Published: Jun 24, 2021
Latest Revision: Jun 24, 2021
Ourboox Unique Identifier: OB-1181861
Copyright © 2021