by Abdurozik Ege Kaknibudsdam
Artwork: Соу изи
Copyright © 2022
Алгебра, учебное пособие для 11-го класса учреждений общего среднего образования с русским языком обучения
Каждая глава учебного пособия заканчивается разделом «Итоговая самооценка», в котором вы найдете перечень требований к усвоению теоретического материала и практические задания для самопроверки. Для обобщения ранее изученного материала предназначен раздел «Повторение курса алгебры», в котором размещены упражнения для итогового повторения и тематические итоговые тесты. В разделе «Математика вокруг нас» вы найдете задачи на применение математики в различных областях жизни. Для тех, кто изучает математику на повышенном уровне, дополнительный теоретический материал и задания по алгебре размещены в учебном пособии «Сборник задач по алгебре, 11 кл.».
Желаем успехов!
СОДЕРЖАНИЕ.
Глава 1. Обобщение понятия степени.
§ 1. Степень с рациональным показателем и ее свойства. Степень с действительным показателем.
§ 2. Степенная функция и ее свойства.
§ 3. Определение логарифма числа. Основное логарифмическое тождество.
Итоговая самооценка.
Глава 2. Показательная функция.
§ 4. Показательная функция.
§ 5. Показательные уравнения.
§ 6. Показательные неравенства.
Итоговая самооценка.
Глава 3. Логарифмическая функция
§ 7. Свойства логарифмов.
§ 8. Логарифмическая функция. Свойства логарифмической функции.
§ 9. Логарифмические уравнения.
§ 10. Логарифмические неравенства.
Итоговая самооценка.
Повторение курса алгебры.
Упражнения для итогового повторения.
Тематические тесты.
Математика вокруг нас.
Ответы.
– по базовой математике (PDF)
– по профильной математике (PDF)Краткий справочник по алгебре (PDF)
Краткий справочник по геометрии (PDF)Р. Г. Гилемханов Заметки о двух задачах (PDF)
Р. Г. Гилемханов Задание 17 в ЕГЭ−2018 (PDF)
Р. Г. Гилемханов По следам одной геометрической задачи (PDF)
Р. Г. Гилемханов Свойство пропорции… или свойство дроби? (PDF)
Р. Г. Гилемханов Самоучитель по решению задач о
банковских кредитах (PDF)
Справочные сведения
- Алгебра
- Формулы сокращенного умножения
- Модуль числа
- Степень с действительным показателем
- Корень n-ой степени из числа
- Логарифмы
- Арифметическая прогрессия
- Геометрическая прогрессия
- Бесконечно убывающая геометрическая прогрессия
- Основные формулы тригонометрии
- Производная и интеграл
- Геометрия
- Треугольник
- Четырехугольники
- Окружность и круг
- Призма
- Пирамида
- Усеченная пирамида
- Цилиндр
- Конус
- Усеченный конус
- Сфера и шар
1. Формулы сокращённого умножения
Наверх
Определение:
Основные свойства модуля:
Наверх
3. Степень с действительным показателем
Свойства степени с действительным показателем
Пусть Тогда верны следующие соотношения:
Наверх
4. Корень n-ой степени из числа
Корнем n-ой степени из числа a называется число, n-ая степень которого равна a.
Арифметическим корнем четной степени n из неотрицательного числа a называется неотрицательное число, n-ая степень которого равна a.
Основные свойства арифметического корня:
Наверх
Определение логарифма:
Основное логарифмическое тождество:
Основные свойства логарифмов
Пусть
Тогда верны следующие соотношения:
Наверх
Формула n-го члена арифметической прогрессии:
Характеристическое свойство арифметической прогрессии:
Сумма n первых членов арифметической прогрессии:
При решении задач, связанных с арифметической прогрессией, могут оказаться полезными также следующие формулы:
Наверх
Формула n-го члена геометрической прогрессии:
Характеристическое свойство геометрической прогрессии:
Сумма n первых членов геометрической прогрессии:
При решении задач, связанных с геометрической прогрессией, могут оказаться полезными также следующие формулы:
Наверх
8. Бесконечно убывающая геометрическая прогрессия
Сумма бесконечно убывающей геометрической прогрессии:
Наверх
9. Основные формулы тригонометрии
Зависимость между тригонометрическими функциями одного аргумента:
Формулы сложения:
Формулы тригонометрических функций двойного аргумента:
Формулы понижения степени:
Формулы приведения
Все формулы приведения получаются из соответствующих формул сложения. Например:
Применение формул приведения укладывается в следующую схему:
— определяется координатная четверть, в которой лежит аргумент приводимой функции, считая, что ;
— определяется знак приводимой функции;
— определяется название приведенной функции по следующему правилу: если аргумент приводимой функции имеет вид или
, то функция меняется на сходственную функцию, если аргумент приводимой функции имеет вид
, то функция названия не меняет.
Например, получим формулу :
— — IV четверть;
— в IV четверти тангенс отрицательный;
— аргумент приводимой функции имеет вид , следовательно, название функции меняется. Таким образом,
Формулы преобразования суммы тригонометрических функций в произведение:
Формулы преобразования произведения тригонометрических функций в сумму:
Наверх
Таблица производных некоторых элементарных функций
| Функция | Производная | Функция | Производная |
|---|---|---|---|
| c | 0 | ||
Правила дифференцирования:
1.
2.
3.
4.
5.
Уравнение касательной к графику функции в его точке
:
Таблица первообразных для некоторых элементарных функций
| Функция | Первообразная | Функция | Первообразная |
|---|---|---|---|
| a | |||
Правила нахождения первообразных
Пусть ― первообразные для функций
и
соответственно, a, b, k ― постоянные,
Тогда:
— ― первообразная для функции
— ― первообразная для функции
— ― первообразная для функции
— Формула Ньютона-Лейбница:
Пусть ― длины сторон BC, AC, AB треугольника ABC соответственно;
― полупериметр треугольника ABC; A, B, C ― величины углов BAC, ABC, ACB треугольника ABC соответственно;
― длины высот AA2, BB2, CC2 треугольника ABC соответственно; R ― радиус окружности, описанной около треугольника ABC; r — радиус окружности, вписанной в треугольник ABC;
― площадь треугольника ABC. Тогда имеют место следующие соотношения:
(теорема синусов);
(теорема косинусов);
Наверх2. Четырёхугольники
Параллелограмм
Параллелограммом называется четырехугольник, противоположные стороны которого попарно параллельны.
Прямоугольником называется параллелограмм, у которого все углы прямые.
Ромбом называется параллелограмм, все стороны которого равны.
Квадратом называется прямоугольник, все стороны которого равны. Из определения следует, что квадрат является ромбом, следовательно, он обладает всеми свойствами прямоугольника и ромба.
Трапецией называется четырехугольник, две стороны которого параллельны, а две другие не параллельны.
Площадь четырехугольника
Площадь параллелограмма равна произведению его основания на высоту.
Площадь параллелограмма равна произведению двух его смежных сторон на синус угла между ними.
Площадь трапеции равна произведению полусуммы ее оснований на высоту.
Площадь четырехугольника равна половине произведения его диагоналей на синус угла между ними.
Наверх
Соотношения между элементами окружности и круга
Пусть r — радиус окружности, d — ее диаметр, C — длина окружности, S — площадь круга, — длина дуги в
градусов,
— длина дуги в
радиан,
— площадь сектора, ограниченного дугой в n градусов,
— площадь сектора, ограниченного дугой в
радиан. Тогда имеют место следующие соотношения:
Вписанный угол
Вписанный угол измеряется половиной дуги, на которую он опирается.
Вписанные углы, опирающиеся на одну и ту же дугу, равны.
Вписанный угол, опирающийся на полуокружность, — прямой.
Вписанная окружность
Центр окружности, вписанной в многоугольник, есть точка равноудаленная от всех сторон этого многоугольника, ― точка пересечения биссектрис углов этого многоугольника. Таким образом, в многоугольник можно вписать окружность, и притом только одну, тогда и только тогда, когда биссектрисы его углов пересекаются в одной точке.
В четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны.
Описанная окружность
Центр окружности, вписанной в многоугольник, есть точка равноудаленная от всех вершин этого многоугольника, ― точка пересечения серединных перпендикуляров к сторонам этого многоугольника. Таким образом, около многоугольника можно описать окружность, и притом только одну, тогда и только тогда, когда серединные перпендикуляры к сторонам этого многоугольника пересекаются в одной точке.
Около четырехугольника можно описать окружность тогда и только тогда, когда суммы его противоположных углов равны
Наверх
Пусть H ― высота призмы, AA1 ― боковое ребро призмы, ― периметр основания призмы,
― площадь основания призмы,
― площадь боковой поверхности призмы,
― площадь полной поверхности призмы, V ― объем призмы,
― периметр перпендикулярного сечения призмы,
― площадь перпендикулярного сечения призмы. Тогда имеют место следующие соотношения:
Свойства параллелепипеда:
— противоположные грани параллелепипеда равны и параллельны;
— диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам;
— квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.
Наверх
Пусть H ― высота пирамиды, ― периметр основания пирамиды,
― площадь основания пирамиды,
― площадь боковой поверхности пирамиды,
― площадь полной поверхности пирамиды, V ― объем пирамиды. Тогда имеют место следующие соотношения:
;
.
Замечание. Если все двугранные углы при основании пирамиды равны , а высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны
, то
Наверх
Пусть H ― высота усеченной пирамиды, и
― периметры оснований усеченной пирамиды,
и
― площади оснований усеченной пирамиды,
― площадь боковой поверхности усеченной пирамиды,
― площадь полной поверхности усеченной пирамиды, V ― объем усеченной пирамиды.
Тогда имеют место следующие соотношения:
Замечание. Если все двугранные углы при основании пирамиды равны , а высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны
, то:
Наверх
Пусть h ― высота цилиндра, r ― радиус цилиндра, ― площадь боковой поверхности цилиндра,
― площадь полной поверхности цилиндра, V ― объем цилиндра.
Тогда имеют место следующие соотношения:
Наверх
Пусть h ― высота конуса, r ― радиус основания конуса, l ― образующая конуса, ― площадь боковой поверхности конуса,
― площадь полной поверхности конуса, V ― объем конуса.
Тогда имеют место следующие соотношения:
Наверх
Пусть h ― высота усеченного конуса, r и ― радиусы основания усеченного конуса, l ― образующая усеченного конуса,
― площадь боковой поверхности усеченного конуса, V ― объем усеченного конуса. Тогда имеют место следующие соотношения:
Наверх
Пусть R ― радиус шара, D ― его диаметр, S ― площадь ограничивающей шар сферы, ― площадь сферической поверхности шарового сегмента (шарового слоя), высота которого равна h, V ― объем шара,
― объем сегмента, высота которого равна h,
― объем сектора, ограниченного сегментом, высота которого равна h. Тогда имеют место следующие соотношения:
Материалы, выдаваемые на экзамене, смотрите здесь
- Полный краткий справочник
- Формулы сокращенного умножения
- Модуль числа, модуль выражения
- Степень с действительным показателем
- Корень n-ой степени из числа
- Логарифмы
- Арифметическая прогрессия
- Геометрическая прогрессия
- Бесконечно убывающая геометрическая прогрессия
- Основные формулы тригонометрии
- Производная и интеграл
- Треугольник
- Четырехугольники
- Окружность и круг
- Призма
- Пирамида
- Усеченная пирамида
- Цилиндр
- Конус
- Усеченный конус
- Сфера и шар
- Векторы и координаты
- Особенности экзаменационных заданий профильной математики
- Задания 1: округление величин, проценты
- Задания 2: анализ графических зависимостей
- Задания 3 и 6: планиметрия
- Треугольник
- Равносторонний треугольник
- Равнобедренный треугольник
- Прямоугольный треугольник
- Тригонометрические функции дополнительных углов
- Основное тригонометрическое тождество и следствия из него
- Смежные углы
- Средняя линия треугольника
- Медиана треугольника
- Биссектриса треугольника
- Высота треугольника
- Серединный перпендикуляр
- Теорема косинусов
- Параллелограмм
- Правильный шестиугольник
- Теоремы о площадях многоугольников
- Окружность
- Вектор
- Треугольник
- Задания 4: вероятности событий
- Задания 5: простейшие уравнения
- Задания 7: производные, первообразные
- Задания 8: стереометрия
- Задания 9: тождественные преобразования выражений
- Задания 10: задачи с прикладным содержанием
- Задания 11: текстовые задачи
- Задания 12: исследование функций при помощи производной
Внимательно просмотрев всю информацию и изучив ее вы успешно сдадите экзамен по математике(нет)
Published: Nov 11, 2022
Latest Revision: Nov 11, 2022
Ourboox Unique Identifier: OB-1385675
Copyright © 2022